Domain Decomposition Operator Splittings for the Solution of Parabolic Equations
نویسندگان
چکیده
We study domain decomposition counterparts of the classical alternating direction implicit (ADI) and fractional step (FS) methods for solving the large linear systems arising from the implicit time stepping of parabolic equations. In the classical ADI and FS methods for parabolic equations, the elliptic operator is split along coordinate axes; they yield tridiagonal linear systems whenever a uniform grid is used and when mixed derivative terms are not present in the differential equation. Unlike coordinate-axes-based splittings, we employ domain decomposition splittings based on a partition of unity. Such splittings are applicable to problems on nonuniform meshes and even when mixed derivative terms are present in the differential equation and they require the solution of one problem on each subdomain per time step, without iteration. However, the truncation error in our proposed method deteriorates with smaller overlap amongst the subdomains unless a smaller time step is chosen. Estimates are presented for the asymptotic truncation error, along with computational results comparing the standard Crank–Nicolson method with the proposed method.
منابع مشابه
Additive domain decomposition operator splittings – convergence analyses in a dissipative framework
We analyze temporal approximation schemes based on overlapping domain decompositions. As such schemes enable computations on parallel and distributed hardware, they are commonly used when integrating large-scale parabolic systems. Our analysis is conducted by first casting the domain decomposition procedure into a variational framework based on weighted Sobolev spaces. The time integration of a...
متن کاملA Two-Stage Multi-Splitting Method for Non-Overlapping Domain Decomposition for Parabolic Equations
In domain decomposition for parabolic partial differential equations (PDE) several approaches have been developed— breaking the domain into multiple subdomains of either overlapping or non-overlapping type, or using algebraic type splittings— cf. [CM94] for an overview. An important aspect is how to present the boundary conditions across interfaces or across common unknown points of subdomains,...
متن کاملExplicit Implicit Non Overlapping Domain Decomposition Method with Splitting up method for Multi Dimensional Parabolic Problem
The explicit implicit domain decomposition methods are a non iterative types of methods for non overlapping domain decomposition. In comparison with the classical Schwarz algorithm for parabolic problem the former methods are computationally and communicationally more efficient for each time step but due to the use of the explicit step for the interface prediction the methods suffer from the ac...
متن کامل1Overlapping Schwarz for Linear and Nonlinear Parabolic Problems
The basic ideas underlying waveform relaxation were rst suggested in the late 19th century by Picard and Lindell of ((Lin94], Lin93]). However much recent interest in waveform relaxation as a practical parallel method for the solution of stii ordinary diierential equations (ODE's) has been generated after the publication of a paper by Lelarasmee and coworkers LRSV82] in the VLSI literature, and...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 19 شماره
صفحات -
تاریخ انتشار 1998